Автомобильный портал - Сarstoresale

Бегущие огни на attiny2313 прошивка. Бегущие огни. Схема бегущих огней и принцип её работы

Среди десятков разнообразных светодиодных мигалок достойное место занимает схема бегущих огней на светодиодах, собранная на микроконтроллере ATtiny2313. С её помощью можно создавать различные световые эффекты: от стандартного поочерёдного свечения до красочного плавного нарастания и затухания огня. Один из вариантов того, как сделать своими руками бегущий огонь на светодиодах под управлением МК ATtiny2313, рассмотрим на конкретном примере.

Сердце бегущих огней

То, что AVR микроконтроллеры Atmel обладают высокими эксплуатационными характеристиками – всем известный факт. Их многофункциональность и лёгкость программирования позволяет реализовывать самые необыкновенные электронные устройства. Но начинать знакомство с микроконтроллерной техникой лучше со сборки простых схем, в которых порты ввода/вывода имеют одинаковое назначение.

Одной из таких схем являются бегущие огни с выбором программ на ATtiny2313. В данном микроконтроллере есть всё необходимое для реализации подобных проектов. При этом он не перегружен дополнительными функциями, за которые пришлось бы переплачивать. Выпускается ATtiny2313 в корпусе PDIP и SOIC и имеет следующие технические характеристики:

  • 32 8-битных рабочих регистра общего назначения;
  • 120 операций, выполняемых за 1 тактовый цикл;
  • 2 кБ внутрисистемной flash-памяти, выдерживающей 10 тыс. циклов запись/стирание;
  • 128 байт внутрисистемной EEPROM, выдерживающей 100 тыс. циклов запись/стирание;
  • 128 байт встроенной оперативной памяти;
  • 8-битный и 16-битный счётчик/таймер;
  • 4 ШИМ канала;
  • встроенный генератор;
  • универсальный последовательный интерфейс и прочие полезные функции.

Энергетические параметры зависят от модификации:

  • ATtiny2313 – 2,7-5,5В и до 300 мкА в активном режиме на частоте 1 МГц;
  • ATtiny2313А (4313) – 1,8-5,5В и до 190 мкА в активном режиме на частоте 1 МГц.

В ждущем режиме энергопотребление снижается на два порядка и не превышает 1 мкА. Кроме этого данное семейство микроконтроллеров обладает целым рядом специальных свойств. С полным перечнем возможностей ATtiny2313 можно ознакомиться на официальной страничке производителя www.atmel.com.

Схема и принцип её работы

В центре принципиальной электрической схемы расположен МК ATtiny2313, к 13-ти выводам которого подключены светодиоды. В частности, для управления свечением полностью задействован порт В (PB0-PB7), 3 вывода порта D (PD4-PD6), а также PA0 и PA1, которые остались свободными из-за применённого внутреннего генератора. Первый вывод PA2 (Reset) не принимает активного участия в схеме и через резистор R1 соединён с цепью питания МК. Плюс питания 5В подаётся на 20-й вывод (VCC), а минус – на 10-й вывод (GND). Для исключения помех и сбоев в работе МК по питанию установлен полярный конденсатор С1.
С учётом небольшой нагрузочной способности каждого вывода подключать следует светодиоды, рассчитанные на номинальный ток не более 20 мА. Это могут быть как сверхъяркие led в DIP корпусе с прозрачной линзой, так и smd3528. Всего их в данной схеме бегущих огней 13 шт. В качестве ограничителей тока выступают резисторы R6-R18.

Нумерация светодиодов на схеме указана в соответствии с прошивкой.

Через цифровые входы PD0-PD3, а также с помощью кнопок SB1-SB3 и переключателя SA1 производится управление работой схемы. Все они подключены через резисторы R2, R3, R6, R7. На программном уровне предусмотрено 11 различных вариаций мигания светодиодов, а также последовательный перебор всех эффектов. Выбор программы задаётся кнопкой SB3. В пределах каждой программы можно изменять скорость её выполнения (мигания светодиодов). Для этого переключатель SA1 переводят в замкнутое положение (скорость программы) и кнопками увеличения (SB1) и уменьшения (SB2) скорости добиваются желаемого эффекта. Если SA1 разомкнуть, то кнопки SB1 и SB2 будут регулировать яркость светодиодов (от слабого мерцания до свечения на номинальной мощности).

Печатная плата и детали сборки

Специально для начинающих радиолюбителей предлагаем два варианта сборки бегущих огней: на макетной и на печатной плате. В обоих случаях рекомендуется использовать микросхему в PDIP корпусе, устанавливаемую в DIP-20 панельку. Все остальные детали также в DIP корпусах. В первом случае достаточно будет макетной платы 50х50 мм с шагом 2,5 мм. При этом светодиоды можно разместить, как на плате, так и на отдельной линейке, соединив их с макетной платой гибкими проводами.

Если бегущие огни на светодиодах предполагается активно использовать в дальнейшем (например, в автомобиле, велосипеде), то лучше собрать миниатюрную печатную плату. Для этого понадобится односторонний текстолит размером 55*55 мм, а также радиоэлементы.

В настоящее время в интернете море схем с бегущими огнями. В нашей статье рассмотрим самую простую схему, собранную на двух популярных микросхемах: таймере 555 и счетчике CD4017.

Будем собирать вот по этой схеме (для увеличения кликните по ней):

Схема не очень сложная, как кажется на первый взгляд. Итак, чтобы ее собрать, нам потребуются:

1) три резистора номиналом: 22 КилоОма, 500 КилоОм и 330 Ом

2) микросхема NE555

3) микросхема CD4017

4) конденсатор на 1 микрофарад

5) 10 советских или китайских светодиодов на 3 Вольта

Распиновка 555


В настоящее время большинство микросхем производят в так называемом DIP корпусе . DIP – от англ. – Dual In-line Package, что в дословном переводе означает как “двухрядная сборка”. Выводы микросхем в корпусе DIP находятся в противоположных сторонах друг от друга. Расстояние между выводами в основном 2,54 мм, но есть также и исключения. В зависимости от того, сколько выводов имеет микросхема, так и называется корпус на эту микросхему. Например микросхема 555 имеет 8 выводов, следовательно, ее корпус называется DIP-8.

В красных кружочках я пометил так называемые “ключи”. Это специальные метки, с помощью которых можно узнать начало маркировки выводов микросхемы


Первый вывод как раз находится рядом с ключом. Счет идет против часовой стрелки


Значит, на микросхеме NE555N выводы нумеруются таким образом:


Все то же самое касается и микросхемы CD4017, которая изготовлена в корпусе DIP-16.


Нумерация выводов идет с левого нижнего угла.

Сборка устройства

Собираем наши бегущие огни. На макетной плате они выглядят примерно вот так:


А вот работа схемы в действии:

Работает вся схема таким образом: на таймере 555 собран генератор прямоугольных импульсов. Частота следования импульсов зависит от резистора R2 и конденсатора С1. Далее эти прямоугольные импульсы считает микросхема счетчика CD4017 и в зависимости от количества прямоугольных импульсов, выдает сигналы на свои выводы. Когда в микросхеме счетчик переполняется, все начинается сначала. Светодиоды моргают по кругу, пока на схеме есть напряжение.

Имейте ввиду, что аналогов микросхем 555 и CD4017 туева куча. Есть даже советские аналоги. Для таймера 555 это КР1006ВИ1, а для микросхемы счетчика К561ИЕ8.

Первый радиолюбительский вариант схемы бегущих огней на светодиодах, построен на уже зарекомендовавшем себя микроконтроллере ATtiny2313. В прошивки находится двенадцать возможных комбинаций различных световых эффектов, таких как плавно изменяющиеся огни, перелевающаяся тень, нарастающий огонь и т.п. ниже рассмотрены конструкции без микроконтроллера, но уже на несколько устаревшей элементной базе.


Эта конструкция способна осуществлять управление тринадцатью светодиодами, которые подсоединены через токоограничивающие резисторы напрямую к портам микроконтроллера ATtiny2313.

Тумблером SA3 можно осуществлять переключение между возможными вариантами работы. Тумблерами SA1 и SA2 можно регулировать скорость движения огней или частоту мигания каждого светодиода отдельно. Все это зависит, от положения тумблера SA4. При верхнем положении он регулирует скорость бегущих огней, а при нижнем частота мигания.

При установке светодиодов в линейку необходимо соблюдать очередность как указано на рисунке от HL1 до HL11. Микроконтроллер ATtiny2313 тактируем от имеющегося внутреннего генератора с частотой 8 МГц.

В предлагаемом устройстве очередность зажигания гирлянд для создания эффекта осуществляется с помощью трех электромагнитных реле путем использования различных значений напряжения, поступающего в цепь их обмоток


При подаче напряжения питания от сети оно поступает на первичную обмотку сетевого трансформатора Т1, к вторичной обмотке которого подключен выпрямитель, собранный по схеме с удвоением напряжения на диодах VD1, VD2 и конденсаторах С2, СЗ. Эффективное напряжение вторичной обмотки трансформатора составляет 13,5 Б. Поэтому выпрямленное напряжение в результате удвоения оказывается равным около 32 В. В исходном состоянии транзистор VT1, включенный по схеме с общим коллектором, заперт, поскольку конденсатор С1 разряжен. При этом все реле обесточены и горит гирлянда HL1.

Начинается заряд, конденсатора С1. По мере заряда конденсатора напряжение на нем и на эмиттере транзистора растет. Когда оно достигнет значения, при котором ток в обмотке реле КЗ превысит ток срабатывания, контакты К3.1 переключатся, лампы HL1 погаснут, а лампы HL2 загорятся. Дальнейшее увеличение напряжения на эмиттере транзистора приводит к срабатыванию реле К2, которое контактами К2.1 выключит лампы HL2 и включит HL3. Наконец, продолжающееся увеличение напряжения приводит к срабатыванию реле К1, контакты которого К1.1 разряжают конденсатор С1.

В результате запирается транзистор, все реле обесточиваются, зажигаются лампы HL1, а контакты К1.1 размыкаются. Тогда конденсатор вновь начинает заряжаться и процесс повторяется. Скорость заряда конденсатора и перемещения бегущего огня можно регулировать переменным резистором R2. В качестве сетевого трансформатора используется выходной трансформатор кадровой развертки ТВК-110ЛМ от черно-белых телевизоров. Из двух вторичных обмоток используется та, сопротивление которой составляет 1 Ом. Автор предложил использовать электромагнитные реле типа РЭС9.

Однако, ни одно реле этого типа не предназначено на коммутацию переменного напряжения 220 В (только 115). Поэтому советуем установить реле РЭС10, паспорт РС4.524.302 (РС4.529.031-03 согласно ГОСТ 16121-86). Их ток срабатывания составляет 22 мА, а сопротивление обмотки - 630 Ом. Таким образом, устройство К3 сработает при напряжении на эмиттере VT113,9 В. Благодаря включению резисторов R4 и R5 остальные два реле срабатывают при более высоком напряжении на эмиттере транзистора. Реле К2 срабатывает при напряжении 20,5 В, а реле К1 - при напряжении 23,3 В. Максимально допустимое напряжение на обмотке реле указанного типа составляет 36 В. Его контакты позволяют коммутировать переменное напряжение частотой 50 Щ и напряжением до 250 В при токе активной нагрузки до 0,3 А. Отсюда, каждая гирлянда может быть собрана из 9 соединенных последовательно лампочек накаливания типа МН26-0Д2, рассчитанных на номинальное напряжение 26 В и ток 0,12 А.

Конструкция представляет собой мультивибратор, состоящий из трех каскадов. Отпирание транзисторов и зажигание включенных в их цепи светодиодов осуществляется последовательно один за другим.

При сборке устройства желательно подобрать транзисторы с возможно большим коэффициентом усиления по току, а конденсаторы с минимальной утечкой.

Схема бегущих огней на микросхемах К561ЛА7 и К561ИЕ8

Схема достаточно простая состоит из двух микросхем и десятка светодиодов, которые поочередно загораются.

Для регулировки скорости бегущих огней используется потенциометр R2.

Приведенная в данной статье самодельная схема бегущие огни на светодиодах, построена на довольно популярном . В памяти программы записано до 12 программ различных световых эффектов, которые можно выбрать по своему желанию. Это и бегущий огонь, бегущая тень, нарастающий огонь и так далее.

Этот автомат световых эффектов позволяет управлять тринадцатью светодиодами, которые подключены через токоограничивающие резисторы прямо к портам микроконтроллера ATtiny2313.Как уже было сказано выше, в памяти микроконтроллера зашиты 11 различных самостоятельных комбинаций световых рисунков, а так же есть возможность последовательного однократного перебора всех 11 комбинаций, это уже будет 12-ая программа.

Кнопка SA3 позволяет осуществлять переключение между программами.

Кнопками SA1 и SA2 можно управлять скоростью движения огней либо частотой мерцания каждого светодиода (от постоянного свечения до легкого мерцания). Все это зависит, в каком положении находится переключатель SA4. При верхнем по схеме положении переключателя SA4 регулируется скорость бегущих огней, а при нижнем частота мерцания.

При монтаже светодиодов в линейку следует соблюдать очередность такую же, как пронумеровано на схеме от HL1 до HL11.

Микроконтроллер ATtiny2313 тактируется от внутреннего генератора с частотой 8 МГц.

Видео работы: Бегущие огни на светодиодах

(1,1 Mb, скачано: 3 650)

Лучшие статьи по теме